II B.Tech I Semester Regular Examinations, November 2007 MATHEMATICS-II

(Common to Civil Engineering, Mechanical Engineering, Chemical Engineering, Mechatronics, Metallurgy \& Material Technology, Production

Engineering, Aeronautical Engineering and Automobile Engineering) Time: 3 hours

Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Find the value of K such that the rank of $\left[\begin{array}{ccc}2 & 1 & 3 \\ 4 & 7 & 13 \\ 4 & -3 & K\end{array}\right]$ is 2
(b) Determine whether the following equations will have a non-trivial solution if so solve them.
$3 \mathrm{x}+4 \mathrm{y}-\mathrm{z}-6 \omega=0 ; \quad 2 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z}-3 \omega=0$
$2 \mathrm{x}+\mathrm{y}-14 \mathrm{z}-9 \omega=0 ; \quad \mathrm{x}+3 \mathrm{y}+13 \mathrm{z}+3 \omega=0$
2. (a) Define eigen value and eigen vector of a matrix A. Show that trace of A equals to the sum of the eigen values of A .
(b) Verify that the sum of eigen values is equal to the trace of A for the matrix $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$ and find the corresponding eigen vectors. $[8+8]$
3. (a) Prove that the eigen values of a skew Hemitian matrix are either zero or purely imaginary.
(b) Find the nature of the quadratic form $2 x^{2}+2 y^{2}+2 z^{2}+2 y z$. Also find Rank, index and signature.
4. (a) Expand $\mathrm{f}(\mathrm{x})=\cos$ ax as a Fourier series in $(-\pi, \pi)$ where a is not an integer. Hence prove that $\cot \theta=\frac{1}{\theta}+\frac{2 \theta}{\theta^{2}-\pi^{2}}+\frac{2 \theta}{\theta^{2}-4 \pi^{2}}+$. \qquad
(b)

$$
\begin{align*}
& \text { If } \mathrm{f}(\mathrm{x})=\mathrm{x}, 0<\mathrm{x}<\frac{\pi}{2} \\
& \quad=\pi-x, \frac{\pi}{2}<x<\pi \tag{8+8}
\end{align*}
$$

Show that $f(x)=\frac{4}{\pi}\left[\sin x-\frac{1}{3^{2}} \sin 3 x+\frac{1}{5^{2}} \sin 5 x-\right.$ \qquad
5. (a) Form the partial differential equation by eliminating the arbitrary function from $\mathrm{z}=\mathrm{yf}\left(x^{2}+z^{2}\right)$.
(b) Solve the partial differential equation $\mathrm{z}(\mathrm{x}-\mathrm{y})=p x^{2}-q y^{2}$
(c) Solve the partial differential equation $(x-y) p+(y-x-z) q=z$.
6. The temperature at one end of a bar is 50 cm long with insulated sides is kept at $0^{\circ} \mathrm{c}$ and that the other end is kept at $100^{\circ} \mathrm{c}$ until steady state condition prevails. The two ends are then suddenly insulated so that the temperature gradient is zero at each end thereafter. Find the temperature distribution.
7. (a) Find the Fourier sine transform of $\frac{1}{x\left(a^{2}+x^{2}\right)}$
(b) Find the finite sine and cosine transform of

$$
\begin{align*}
f(x) & =1 \text { in } 0<x<\pi / 2 \\
& =-1 \text { in } \pi / 2<x<\pi . \tag{10+6}
\end{align*}
$$

8. (a) Find $Z\left[(n+1)^{2}\right]$
(b) Solve the difference equation using z-transforms $u_{n+2}-5 u_{n+1}+6 u_{n}=4^{n}$ given that $u_{0}=0 u_{1}=1$.

II B.Tech I Semester Regular Examinations, November 2007 MATHEMATICS-II

(Common to Civil Engineering, Mechanical Engineering, Chemical Engineering, Mechatronics, Metallurgy \& Material Technology, Production

Engineering, Aeronautical Engineering and Automobile Engineering)
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find the rank of the matrix by reducing it to the echlon form

$$
\left[\begin{array}{cccc}
1 & 0 & -5 & 6 \\
3 & -2 & 1 & 2 \\
5 & -2 & -9 & 14 \\
4 & -2 & -4 & 8
\end{array}\right]
$$

(b) Show that the equations
$3 x+4 y+5 z=a, \quad 4 x+5 y+6 z=b$
$5 \mathrm{x}+6 \mathrm{y}+7 \mathrm{z}=\mathrm{c}$, do not have a solution unless $\mathrm{a}+\mathrm{c}=2 \mathrm{~b}$.
2. (a) Find the characteristic roots of the matrix and the corresponding eigen values

$$
\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

(b) If $\lambda_{1}, \lambda_{2}, \ldots \ldots . ., \lambda_{n}$ are the eigen values of A , then prove that the eigen values of
(A - kI) are $\lambda_{1}-k, \lambda_{2}-k, \lambda_{3}-k, \ldots \ldots \ldots, \lambda_{n}-k$.
$[10+6]$
3. Show that $A=\left[\begin{array}{ccc}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right]$ is a skew-Hermitian matrix and also umitary Find eigen values and the corresponding eigen vectors of A .
4. (a) Find a Fourier series to represent $\mathrm{x}-\mathrm{x}^{2}$ from $\mathrm{x}=-\pi$ to $\mathrm{x}=\pi$.. Hence show that $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots .$.
(b) Find the half range sine series for the function

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
\frac{1}{4}-x, 0<\mathrm{x}<\frac{1}{2} \tag{10+6}\\
x-\frac{3}{4}, \frac{1}{2}<\mathrm{x}<1
\end{array}\right.
$$

5. (a) Form the partial differential equations by eliminating the arbitrary functions $\mathrm{f}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}, \mathrm{x}^{2}+y^{2}+z^{2}\right)=0$
(b) Solve the partial differential equation $2 z^{4} P^{2}-x+z^{2} q+y=0$
(c) Solve the partial differential equation $p^{2} q^{2}+x^{2} y^{2}=x^{2} q^{2}\left(x^{2}+y^{2}\right) .[5+6+5]$
6. Solve $\partial^{2} u / \partial x^{2}+\partial^{2} u / \partial y^{2}=0$. Subject to the boundary conditions $u(0, y)=u(L, y)$ $=u(x, L)=0$ and $u(x, 0)=\sin n \Pi x / L$.
7. (a) State and prove Fourier Integral Theorem.
(b) Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}e^{i k x} & a<x<b \\ 0 & x<a \text { and } x>b\end{array}\right.$
8. (a) If $Z\left[u_{n}\right]=\frac{z^{2}+2 z+6}{(z-1)^{3}},|z| \geq$ then find u_{o}, u_{1} and u_{2}
(b) Solve using z transforms the difference equation $u_{n+2}+2 u_{n+1}+u_{n}=\mathrm{n}$ given that $u_{o}=u_{1}=0$.

II B.Tech I Semester Regular Examinations, November 2007 MATHEMATICS-II

(Common to Civil Engineering, Mechanical Engineering, Chemical Engineering, Mechatronics, Metallurgy \& Material Technology, Production

Engineering, Aeronautical Engineering and Automobile Engineering)
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Find the value of K such that the rank of $\left[\begin{array}{ccc}2 & 1 & 3 \\ 4 & 7 & 13 \\ 4 & -3 & K\end{array}\right]$ is 2
(b) Determine whether the following equations will have a non-trivial solution if so solve them.

$$
\begin{array}{ll}
3 \mathrm{x}+4 \mathrm{y}-\mathrm{z}-6 \omega=0 ; & 2 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z}-3 \omega=0 \\
2 \mathrm{x}+\mathrm{y}-14 \mathrm{z}-9 \omega=0 ; & \mathrm{x}+3 \mathrm{y}+13 \mathrm{z}+3 \omega=0 \tag{8+8}
\end{array}
$$

2. (a) Find the eigen values and the corresponding eigen vectors of the matrix

$$
A=\left[\begin{array}{ccc}
3 & 10 & 5 \\
-2 & -3 & -4 \\
3 & 5 & 7
\end{array}\right]
$$

(b) Prove that the product of eigen values of a matrix is equation its determinant.
3. (a) Prove that the eigen values of a real symmetric matrix are real.
(b) Reduce the quadtatic form $7 x^{2}+6 y^{2}+5 z^{2}-4 \mathrm{xy}-4 \mathrm{yz}$ to the canonical form.
4. (a) Given that $f(x)=x+x^{2}$ for $-\pi<\mathrm{x}<\pi$ find the Fourier expansion of $\mathrm{f}(\mathrm{x})$. Deduce that $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+$ \qquad
(b) Find the half range sine series for $\mathrm{f}(\mathrm{x})=\mathrm{x}(\pi-\mathrm{x})$, in $0<\mathrm{x}<\pi$. Deduce that $\frac{1}{1^{3}}-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\ldots \ldots . .=\frac{\pi^{3}}{32} . \quad[10+6]$
5. (a) Form the partial differential equation by eliminating the arbitrary function from $\mathrm{z}=\mathrm{yf}\left(x^{2}+z^{2}\right)$.
(b) Solve the partial differential equation $\mathrm{z}(\mathrm{x}-\mathrm{y})=p x^{2}-q y^{2}$
(c) Solve the partial differential equation ($\mathrm{x}-\mathrm{y}) \mathrm{p}+(\mathrm{y}-\mathrm{x}-\mathrm{z}) \mathrm{q}=\mathrm{z}$.
6. Solve the boundary value problem $\mathrm{u}_{\mathrm{t}}=\mathrm{u}_{\mathrm{xx}} ; 0<\mathrm{x}<\ell, \mathrm{t}>0$ with $\mathrm{u}(0, \mathrm{t})=0$; $u_{x}(\ell, \mathrm{t})=0$ and $\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}$.
7. (a) Find the finite Fourier sine and cosine transforms of
i. $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in $(0, \mathrm{l})$.
(b) Find the finite sine and transform of $\mathrm{f}(\mathrm{x})=\cos \mathrm{kx}$ in $0<x<\pi$
8. (a) If $z[n]=\frac{z}{(z-1)^{2}}$, find $z[\mathrm{n}+2]$
(b) Solve the difference equation, using Z - transforms $y_{n+2}-4 y_{n+1}+3 y_{n}=0$ given that $y_{0}=2$ and $y_{1}=4$.

II B.Tech I Semester Regular Examinations, November 2007 MATHEMATICS-II

(Common to Civil Engineering, Mechanical Engineering, Chemical Engineering, Mechatronics, Metallurgy \& Material Technology, Production

Engineering, Aeronautical Engineering and Automobile Engineering)
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Determine the rank of the matrix.

$$
A=\left(\begin{array}{cccc}
-2 & -1 & -3 & -1 \\
1 & 2 & 3 & -1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right) \text { by reducing it to normal form. }
$$

(b) Find whether the following equations are consistent, if so solve them.

$$
\begin{align*}
& x+2 y-z=3 \\
& 3 x-y+2 z=1 \\
& 2 x-2 y+3 z=2 \\
& x-y+z=-1 \tag{8+8}
\end{align*}
$$

2. Define a modal matrix, Diagonalize $A=\left(\begin{array}{ccc}1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$
3. (a) If $A=\left[\begin{array}{ccc}2 & 3+2 i & -4 \\ 3-2 i & 5 & 6 i \\ -4 & -6 i & 3\end{array}\right]$ show that A is Hermitian and iA is skewHermitian matrices.
(b) Identify the nature of the quadratic form
$-3 x_{1}^{2}-3 x_{2}^{2}-3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}$. Find index and signature. [8+8]
4. (a) Find the Fourier series to represent $\mathrm{f}(\mathrm{x})=x^{2}-2$, when $-2 \leq \mathrm{x} \leq 2$
(b) Obtain a half range cosine series for $f(x)=\left\{\begin{array}{l}k x, 0 \leq x \leq \frac{L}{2} \\ k(L-x), \frac{L}{2} \leq x \leq L\end{array}\right.$ Deduce the sum of the series $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}} \ldots \ldots .$.
5. (a) Form the partial differential equation by eliminating the arbitrary function from $\mathrm{z}=\mathrm{yf}\left(x^{2}+z^{2}\right)$.
(b) Solve the partial differential equation $\mathrm{z}(\mathrm{x}-\mathrm{y})=p x^{2}-q y^{2}$
(c) Solve the partial differential equation $(x-y) p+(y-x-z) q=z$.

$$
[5+5+6]
$$

6. (a) $4 u_{x}+u_{y}=3 \mathrm{u}$ given $\mathrm{u}=3 e^{-y}-e^{-5 y}$ when $\mathrm{x}=0$.
(b) Find the general solution of one-dimensional heat equation.
7. (a) Find the Fourier transform of $f(x)=\left\{\begin{array}{cl}1-x^{2} & \text { if }|x|<1 \\ 0 & \text { if }|x|>1\end{array}\right.$

Hence evaluate $\int_{0}^{\infty}\left[\frac{x \cos x-\sin x}{x^{2}}\right] \cos \frac{x}{2} d x$.
(b) Find Fourier cosine transform of $f(x)=\left\{\begin{array}{cc}\cos x & 0<x<a \\ 0 & x \geq a\end{array}\right.$
8. (a) If $Z\left[u_{n}\right]=\frac{z^{2}+2 z+6}{(z-1)^{3}},|z| \geq$ then find u_{o}, u_{1} and u_{2}
(b) Solve using z transforms the difference equation $u_{n+2}+2 u_{n+1}+u_{n}=\mathrm{n}$ given that $u_{o}=u_{1}=0$.

