II B.Tech I Semester Regular Examinations, November 2007 MATHEMATICS-II

(Common to Civil Engineering, Mechanical Engineering, Chemical Engineering, Mechatronics, Metallurgy & Material Technology, Production Engineering, Aeronautical Engineering and Automobile Engineering)
 Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find the value of K such that the rank of $\begin{bmatrix} 2 & 1 & 3 \\ 4 & 7 & 13 \\ 4 & -3 & K \end{bmatrix}$ is 2

(b) Determine whether the following equations will have a non-trivial solution if so solve them.

$$3x + 4y - z - 6\omega = 0; \qquad 2x + 3y + 2z - 3\omega = 0$$

$$2x + y - 14z - 9\omega = 0; \qquad x + 3y + 13z + 3\omega = 0. \qquad [8+8]$$

- 2. (a) Define eigen value and eigen vector of a matrix A. Show that trace of A equals to the sum of the eigen values of A.
 - (b) Verify that the sum of eigen values is equal to the trace of A for the matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ and find the corresponding eigen vectors. [8+8]
- 3. (a) Prove that the eigen values of a skew Hemitian matrix are either zero or purely imaginary.
 - (b) Find the nature of the quadratic form $2x^2 + 2y^2 + 2z^2 + 2yz$. Also find Rank, index and signature. [8+8]
- 4. (a) Expand $f(x) = \cos ax$ as a Fourier series in $(-\pi, \pi)$ where a is not an integer. Hence prove that $\cot \theta = \frac{1}{\theta} + \frac{2\theta}{\theta^2 - \pi^2} + \frac{2\theta}{\theta^2 - 4\pi^2} + \dots$
 - (b) If $f(x) = x, 0 < x < \frac{\pi}{2}$ $= \pi - x, \frac{\pi}{2} < x < \pi$ Show that $f(x) = \frac{4}{\pi} \left[\sin x - \frac{1}{3^2} \sin 3x + \frac{1}{5^2} \sin 5x - \dots \right].$ [8+8]
- 5. (a) Form the partial differential equation by eliminating the arbitrary function from $z = y f (x^2 + z^2)$.
 - (b) Solve the partial differential equation $\mathbf{z}(\mathbf{x}-\mathbf{y}) = px^2 qy^2$
 - (c) Solve the partial differential equation (x-y)p + (y-x-z)q = z. [5+5+6]
- 6. The temperature at one end of a bar is 50 cm long with insulated sides is kept at 0° c and that the other end is kept at 100° c until steady state condition prevails. The two ends are then suddenly insulated so that the temperature gradient is zero at each end thereafter. Find the temperature distribution. [16]

- Set No. 1
- 7. (a) Find the Fourier sine transform of $\frac{1}{x(a^2+x^2)}$
 - (b) Find the finite sine and cosine transform of $f(x) = 1 in 0 < x < \pi/2$ $= -1 in \pi/2 < x < \pi.$ [10+6]
- 8. (a) Find $Z[(n+1)^2]$
 - (b) Solve the difference equation using z-transforms $u_{n+2} 5u_{n+1} + 6u_n = 4^n$ given that $u_0 = 0$ $u_1 = 1$. [6+10]

II B.Tech I Semester Regular Examinations, November 2007 MATHEMATICS-II

(Common to Civil Engineering, Mechanical Engineering, Chemical Engineering, Mechatronics, Metallurgy & Material Technology, Production Engineering, Aeronautical Engineering and Automobile Engineering)
 Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

- 1. (a) Find the rank of the matrix by reducing it to the echlon form
 - $\begin{bmatrix} 1 & 0 & -5 & 6 \\ 3 & -2 & 1 & 2 \\ 5 & -2 & -9 & 14 \\ 4 & -2 & -4 & 8 \end{bmatrix}$
 - (b) Show that the equations $3x + 4y + 5z = a, \quad 4x + 5y + 6z = b$ 5x + 6y + 7z = c, do not have a solution unless a + c = 2b. [8+8]
- 2. (a) Find the characteristic roots of the matrix and the corresponding eigen values $\begin{bmatrix} 6 & -2 & 2 \\ 0 & 2 & 1 \end{bmatrix}$

$$\begin{bmatrix} -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

(b) If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigen values of A, then prove that the eigen values of

(A - kI) are
$$\lambda_1 - k$$
, $\lambda_2 - k$, $\lambda_3 - k$, ..., $\lambda_n - k$. [10+6]

3. Show that $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is a skew-Hermitian matrix and also unitary Find eigen values and the corresponding eigen vectors of A. [16]

eigen values and the corresponding eigen vectors of A.

- 4. (a) Find a Fourier series to represent $x x^2$ from $x = -\pi$ to $x = \pi$. Hence show that $\frac{\pi^2}{12} = \frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots$
 - (b) Find the half range sine series for the function $f(\mathbf{x}) = \begin{cases} \frac{1}{4} - x, 0 < \mathbf{x} < \frac{1}{2} \\ x - \frac{3}{4}, \frac{1}{2} < \mathbf{x} < 1 \end{cases}$ [10+6]
- 5. (a) Form the partial differential equations by eliminating the arbitrary functions $f(x + y + z, x^2 + y^2 + z^2) = 0$
 - (b) Solve the partial differential equation $2z^4P^2 x + z^2q + y = 0$
 - (c) Solve the partial differential equation $p^2 q^2 + x^2 y^2 = x^2 q^2 (x^2 + y^2) \cdot [5+6+5]$
- 6. Solve $\partial^2 u/\partial x^2 + \partial^2 u/\partial y^2 = 0$. Subject to the boundary conditions u(0,y) = u(L,y) = u(x,L) = 0 and $u(x,0) = \sin n \, \Pi x/L$. [16]

- Set No. 2
- 7. (a) State and prove Fourier Integral Theorem.
 - (b) Find the Fourier transform of $f(x) = \begin{cases} e^{ikx} & a < x < b \\ 0 & x < a \text{ and } x > b \end{cases}$ [8+8]
- 8. (a) If $Z[u_n] = \frac{z^2 + 2z + 6}{(z-1)^3}$, $|z| \ge \text{then find } u_o, u_1 \text{ and } u_2$
 - (b) Solve using z transforms the difference equation $u_{n+2} + 2u_{n+1} + u_n = n$ given that $u_o = u_1 = 0$. [8+8]

Set No. 3

II B.Tech I Semester Regular Examinations, November 2007 MATHEMATICS-II

(Common to Civil Engineering, Mechanical Engineering, Chemical Engineering, Mechatronics, Metallurgy & Material Technology, Production Engineering, Aeronautical Engineering and Automobile Engineering)
 Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find the value of K such that the rank of $\begin{bmatrix} 2 & 1 & 3 \\ 4 & 7 & 13 \\ 4 & -3 & K \end{bmatrix}$ is 2

(b) Determine whether the following equations will have a non-trivial solution if so solve them.

$$3x + 4y - z - 6\omega = 0; \qquad 2x + 3y + 2z - 3\omega = 0$$

$$2x + y - 14z - 9\omega = 0; \qquad x + 3y + 13z + 3\omega = 0.$$
 [8+8]

2. (a) Find the eigen values and the corresponding eigen vectors of the matrix $A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$

(b) Prove that the product of eigen values of a matrix is equation its determinant. [10+6]

- 3. (a) Prove that the eigen values of a real symmetric matrix are real.
 - (b) Reduce the quadtatic form $7x^2 + 6y^2 + 5z^2 4xy 4yz$ to the canonical form. [6+10]
- 4. (a) Given that $f(x) = x + x^2$ for $-\pi < x < \pi$ find the Fourier expansion of f(x). Deduce that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$
 - (b) Find the half range sine series for $f(x) = x(\pi x)$, in $0 < x < \pi$. Deduce that $\frac{1}{1^3} \frac{1}{3^3} + \frac{1}{5^3} \frac{1}{7^3} + \dots = \frac{\pi^3}{32}$. [10+6]
- 5. (a) Form the partial differential equation by eliminating the arbitrary function from $z = y f (x^2 + z^2)$.
 - (b) Solve the partial differential equation $\mathbf{z}(\mathbf{x}\textbf{-}\mathbf{y})=px^2$ qy^2
 - (c) Solve the partial differential equation (x-y)p + (y-x-z)q = z. [5+5+6]
- 6. Solve the boundary value problem $u_t = u_{xx}$; $0 < x < \ell, t > 0$ with u(0, t) = 0; $u_x(\ell, t) = 0$ and u(x, 0) = x. [16]
- (a) Find the finite Fourier sine and cosine transforms of
 i. f (x) = x in (0, l).
 - (b) Find the finite sine and transform of $f(x) = \cos kx$ in $0 < x < \pi$ [8+8]

- 8. (a) If $z[n] = \frac{z}{(z-1)^2}$, find z[n+2]
 - (b) Solve the difference equation, using Z transforms $y_{n+2} - 4y_{n+1} + 3y_n = 0$ given that $y_0 = 2$ and $y_1 = 4$. [8+8]

[8+8]

II B.Tech I Semester Regular Examinations, November 2007 MATHEMATICS-II

(Common to Civil Engineering, Mechanical Engineering, Chemical Engineering, Mechatronics, Metallurgy & Material Technology, Production Engineering, Aeronautical Engineering and Automobile Engineering)
 Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

1. (a) Determine the rank of the matrix.

 $A = \begin{pmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$ by reducing it to normal form.

(b) Find whether the following equations are consistent, if so solve them.

$$x + 2y - z = 3 3x - y + 2z = 1 2x - 2y + 3z = 2 x - y + z = -1.$$

2. Define a modal matrix, Diagonalize $A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ [16]

- 3. (a) If $A = \begin{bmatrix} 2 & 3+2i & -4 \\ 3-2i & 5 & 6i \\ -4 & -6i & 3 \end{bmatrix}$ show that A is Hermitian and iA is skew-Hermitian matrices.
 - (b) Identify the nature of the quadratic form $-3x_1^2 - 3x_2^2 - 3x_3^2 - 2x_1x_2 - 2x_1x_3 + 2x_2x_3$. Find index and signature. [8+8]
- 4. (a) Find the Fourier series to represent $f(x) = x^2 2$, when $-2 \le x \le 2$
 - (b) Obtain a half range cosine series for $f(x) = \begin{cases} kx, 0 \le x \le \frac{L}{2} \\ k(L-x), \frac{L}{2} \le x \le L \end{cases}$ Deduce the sum of the series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2}$ [10+6]
- 5. (a) Form the partial differential equation by eliminating the arbitrary function from $z = y f (x^2 + z^2)$.
 - (b) Solve the partial differential equation $z(x-y) = px^2 qy^2$
 - (c) Solve the partial differential equation (x-y)p + (y-x-z)q = z. [5+5+6]
- 6. (a) $4u_x + u_y = 3u$ given $u = 3e^{-y} e^{-5y}$ when x = 0.
 - (b) Find the general solution of one-dimensional heat equation. [8+8]

- 7. (a) Find the Fourier transform of $f(x) = \begin{cases} 1-x^2 & if |x| < 1 \\ 0 & if |x| > 1 \end{cases}$ Hence evaluate $\int_{0}^{\infty} \left[\frac{x\cos x - \sin x}{x^2}\right] \cos \frac{x}{2} dx.$
 - (b) Find Fourier cosine transform of $f(x) = \begin{cases} \cos x & 0 < x < a \\ 0 & x \ge a \end{cases}$ [10+6]

Set No. 4

- 8. (a) If $Z[u_n] = \frac{z^2 + 2z + 6}{(z-1)^3}$, $|z| \ge$ then find u_o , u_1 and u_2
 - (b) Solve using z transforms the difference equation $u_{n+2} + 2u_{n+1} + u_n = n$ given that $u_o = u_1 = 0$. [8+8]